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SUMMARY

A numerical solution method for accurately capturing material interfaces in unsteady compressible Euler
�ows is presented. The method consists of a �nite volume scheme on a moving computational mesh
and employs the HLLC approximate Riemann solver to evaluate intercell numerical �uxes. The mesh is
moved in a Lagrangian fashion with the material, and to avoid grid distortion, remapping is performed
at the end of each time interval, with the distorted grid being rezoned back to the initial mesh. The
focus of the work is multimaterial �ows consisting of two immiscible materials separated by an in-
terface. The innovative aspect of the work is the application of a conservative ghost �uid method,
together with a volume of �uid technique, within the moving mesh plus continuous remap framework.
In addition a preliminary discussion, concerning the extension of the solution method to two spatial
dimensions, includes a new area preserving volume fraction version of the interface reconstruction
algorithm reported by Bonnell et al. (Material Interface Reconstruction. Lawrence Livermore National
Laboratory Report). Copyright ? 2005 John Wiley & Sons, Ltd.
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1. GOVERNING EQUATIONS

In the reference frame of an arbitrary moving control volume, the Euler equations for one
dimensional (1D), unsteady compressible �ow, may be expressed in integral form as

@
@t

∫
�(t)
q(x; t) d� +

∮
�(t)
f(q(x; t))·n̂ d�=0 (1)

The moving control volume �(t) is enclosed by its boundary �(t), and n̂ denotes the outward
unit normal to �(t). The vector of conserved variables is given by q=(�; �u; �E)T, and the
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�ux vector is f(q)= (u − ẋ)q + (0; p; up)T, where � is density, u is �ow velocity, ẋ is the
velocity of �(t); E is speci�c total energy, and p is pressure. The system is completed by the
ideal gas equation of state (EOS), p=(� − 1)�e, where e=E − 1

2 u is the speci�c internal
energy and � (1¡�¡ 5

3 ) is a constant representing the ratio of speci�c heat capacities of the
material.
It is assumed that the �ow consists of two immiscible components separated by a material

interface. Each component is uniquely characterized by the value of � in the EOS.

2. THE FINITE VOLUME SCHEME

The spatial domain is discretized into N non-overlapping computational cells, Ii, initially of
a uniform size. The average value of q over each cell is approximated and stored at the cell
centre (node). The governing equations (1) are discretized according to the conservative �nite
volume formula

Qn+1
i �xn+1i −Qn

i�xni
�t

= − (Fi+1=2 − Fi−1=2) i=0; : : : ; N (2)

where

Qn
i ≈ 1

�xni

∫ xni+1=2

xni−1=2

q(x; tn) dx and Fi−1=2 ≈ 1
�t

∫ tn+1

tn
f(q(xi−1=2(t); t)) dt (3)

Here, �xni and xni±1=2 are, respectively, the cell volume and cell boundaries at time tn, and �t
is the variable time interval from time tn to tn+1. To evaluate Fi−1=2 the cell average values are
used to reconstruct a data distribution function in each cell of the domain, and the resulting
Riemann problems that arise at the cell boundaries are solved approximately.
The mesh movement is determined by the evolution of the vertex positions. It is assumed

that the vertex velocity ẋi−1=2 is constant in magnitude and direction during the time interval,
and ẋi−1=2 is evaluated from the values of un using linear interpolation.
The size of the time step is evaluated, prior to each time interval, by selecting �t to satisfy

two constraints. The �rst constraint is that �t should be chosen so that during a time interval
none of the waves resulting from a Riemann problem travel more than half a cell width of
the initial mesh. The second constraint is that �t is chosen so that the mesh vertices are not
displaced during the time interval by more than half a cell width of the initial mesh.

3. THE HLLC RIEMANN SOLVER

The principle behind the HLLC Riemann solver is to reduce the full Riemann problem to
an approximate solution consisting of four constant states separated by three discontinu-
ous waves. If the wave velocities of the three discontinuities are known, then application
of the integral form of the conservation laws over an appropriate control volume, together
with the assumption that particle velocity is constant within the internal structure of the
Riemann solution, yields a closed form approximate expression for the intercell numerical �ux.
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The original derivation [1] was with respect to a �xed reference frame. The expression below
accounts for the movement of the mesh

Fhllci−1=2 =
1
2 [(uR − ẋi−1=2)QR + F

lag
K + (uL − ẋi−1=2)QL + F

lag
K

+ |SL − ẋi−1=2|QL − (|SL − ẋi−1=2| − |S∗ − ẋi−1=2|)Q∗
L

− |SR − ẋi−1=2|QR + (|SR − ẋi−1=2| − |S∗ − ẋi−1=2|)Q∗
R]

Here, QL and QR are, respectively, the left and right data states of the Riemann problem
originating at xni−1=2;F

lag
K =(0; pK ; uKpK)T andQ∗

K =(�
∗
K ; �

∗
Ku

∗
K ; �

∗
KE

∗
K)
T where �∗

K =�K(SK−uK)=
(SK − S∗); u∗

K = S∗; p∗
K =pK + �K(uK−SK)(uK − S∗) and K =L; R. The wave speed estimates

SL; S∗ and SR are acquired following an approach suggested in Reference [2].
A MUSCL–Hancock technique, involving characteristic slope limiting, is applied in order

to obtain a high-resolution �ux [1].

4. THE GHOST FLUID METHOD (GFM)

The material interface naturally divides the computational domain into two separate regions.
Each point in the domain corresponds to one material or the other. In the GFM [3], ghost
solution values (GSVs) are de�ned within the existing domain discretization in order to extend,
each material region to the ‘opposite’ side of the interface. Hence, in a neighbourhood of the
interface, each mesh node has associated with it, cell average values of mass, momentum and
total energy for the real material in that cell, and ghost cell average values of mass, momentum
and total energy for the material that does not really exist in that cell, but is located on the
‘opposite side’ of the interface. Once the GSVs are de�ned, the material regions are assumed
separate identities, and each set of solution variables is evolved independently using the single
material �ow solver. The magnitude of the updated volume fractions are used to determine
which of the two sets of solution variables is real at the new time level. GSVs are de�ned and
discarded, respectively, at the beginning and end of the moving mesh phase of the proposed
two-stage solution method. The one exception to this rule concerns the GSVs within the
mixed cell. In order to be consistent with the remapping procedure and the conservative
correction algorithm, the GSVs within the mixed cell are retained until the beginning of the
next time interval. The process can be optimized for implementation by applying the method
only in a band of cells on either side of the interface. An important feature of the GFM is
that it regulates the complexities associated with the existence of multicomponent cells, whilst
maintaining a Heaviside solution pro�le of density at the interface with no numerical di�usion
or dispersion. There is no requirement to solve a multimaterial Riemann problem, consider
the Rankine–Hugoniot jump conditions, or solve an IVP at the interface. Furthermore, there
is freedom of choice concerning the single-component �ow solver used with the method.
The success of the GFM relies on capturing the appropriate interface conditions when de�n-

ing GSVs. Following the methodology of Reference [3], the pressure and velocity variables,
which are continuous across the interface, are copied cell by cell into the GSVs from the
real material (ensuring continuity of these variables). The remaining discontinuous variable,
required to completely determine the �ow solution, is extrapolated into the GSVs from a
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Figure 1. De�ning GSVs using an isobaric �x. p is pressure, u is �ow velocity and s is entropy.

reference state on the opposite side of the interface. In order to avoid numerical dissipation
errors and associated spurious pressure oscillation phenomena, constant extrapolation is used,
creating a continuous variable pro�le and minimizing the variation from the reference state.
Based on work in Reference [4] and con�rmed by numerical experiment, entropy is taken
to be the extrapolated value. Figure 1 shows a schematic outlining the details involved in
de�ning the GSVs. The �gure also illustrates an isobaric �x being imposed. This involves
using the extrapolation technique to alter the entropy values of the real material values near
the interface, to further reduce numerical errors [3].
To obtain a fully conservative GFM, a post processing correction algorithm following on

from work in Reference [5] is implemented in conjunction with the moving �nite volume
scheme.
The fractional volume,  (M)i , of each cell occupied by each material is stored. They are

evolved in time independently of the �ow solution according to a predictor–corrector
discretization [6] of the equation

@ (M)

@t
+

@
@x
( (M)u̇)=

 (M) �KS

��K (M)
S

·@u̇
@x

(4)

where KS = �(M)p(M); ��=
∑2

M=1  
(M)�(M); �KS =(

∑2
M=1  

(M)=K (M)
S )−1 and u̇ is the �ow

velocity relative to the moving reference frame. Equation (4) ensures adherence to the
constraint

∑2
M=1  (M)i =1.

5. REMAPPING=REZONING

The remap procedure may be regarded as integrating the known solution variables on the
old grid over the cell of a new mesh. In this work remapping is performed periodically at
the end of each time step and the grid is rezoned to the initial uniform mesh. The actual
quantities remapped are the conserved variables. In multi-material �ows each material is
rezoned separately and the values of the volume fractions are modi�ed in accordance with
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the transfer of data from the old mesh to the new. The remap procedure for material M in
cell Ii may be expressed in integral form as

�Q(M)
i =

1
��xi

∫ �xi+1=2

�xi−1=2

Q̃(M)(x; tn+1) dx (5)

The overbar denotes remapped values and Q̃(x; tn+1) is a data distribution function recon-
structed from the cell average values Qn+1

i . Equation (5) can be evaluated as a sum of
integrals over the intersection regions between cell �Ii and the cells on the old distorted mesh
[7]. The accuracy of the remap procedure is determined by the degree of Q̃. Numerical
experiment disclosed a pressure oscillation at the interface when remapping with a piecewise
linear Q̃ function. This phenomenon was eliminated by remapping with �rst-order accuracy
in a neighbourhood of the interface, whilst maintaining higher-order accuracy throughout the
remainder of the domain. The mesh is rezoned by returning it to the position it held at the
beginning of the time interval. The remapping process is conservative. In terms of e�ciency,
remapping need only be implemented within areas of the computational domain where the
mesh was displaced in the �rst phase of the proposed two-stage solution method.

6. 2D—PRELIMINARY DISCUSSION

Current work is proposing to extend the presented numerical method to two-dimensional,
unsteady multimaterial compressible Euler �ows. In this instance governing equations may be
written in integral form as

@
@t

∫∫
�(t)
q(x; y; t) d� +

∮
�(t)
(f(q(x; y; t)); g(q(x; y; t)))·n̂ d�=0 (6)

where �(t) is the moving control volume enclosed by its boundary �(t), q=(�; �u; �v; �E);
f(q)= (u − ẋ)q+ (0; p; 0; up); g(q)= (v − ẏ)q+ (0; 0; p; vp), and n̂ denotes the outward unit
normal to �(t). The system of equations (6) is discretized through the following dimensional
splitting:

Qn+1′
i; j =

�n
i; j

�n+1′
i; j

(
Qn

i; j − �t
�n

i; j

[
sni+1=2; jFi+1=2; j − sni−1=2; jFi−1=2; j

])
; Fi−1=2; j(Qn

i−1; j ;Q
n
i; j ; �u) (7)

Qn+1
i; j =

�n+1′
i; j

�n+1
i; j

(
Qn+1′

i; j − �t
�n+1′

i; j

[
sn+1

′
i; j+1=2Gi; j+1=2 − sn+1

′
i; j−1=2Gi; j−1=2

])
; Gi; j−1=2(Qn+1′

i; j−1;Q
n+1′
i; j ; �v)

(8)

where �n
i; j is the volume of cell Ii; j at time tn; �u; �v, and si−1=2; j ; si; j−1=2 are, respectively,

facial velocities and lengths calculated in accordance with Reference [8]. Fi−1=2; j and Gi; j−1=2
are numerical approximations to the time average �ux across faces �i−1=2; j and �i; j−1=2, re-
spectively. They are evaluated by solving the x and y split one-dimensional Riemann problem
using the HLLC Riemann solver in conjunction with the GFM. Evaluation of �t takes into
account wave speeds and mesh dimensions in both spatial directions.
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The principle of the GFM in 2D is the same as in 1D. However, in 2D de�ning the
GSVs is more involved since there is more than one velocity component and a choice for the
direction of extrapolation must be made. The GSVs for the pressure and velocity components
are de�ned by setting them equal to the real material values in each cell in the computational
domain. Constant extrapolation of entropy into cells containing and bordering the interface is
performed in the direction of the normal to the interface. The normal value is extracted from
a piecewise linear interface reconstructed from the fractional volume data.
The interface reconstruction algorithm develops an approach presented in Reference [9].

Reconstruction of a linear interface in an interface cell is transformed to a problem that
analyses a ‘local central dual’ mesh of the interface cell in question and its eight surrounding
cells. Each vertex in the dual mesh has associated with it the volume fraction of the cell
within which it is centred. Material boundaries on the dual mesh are found by considering
the volume fractions in ‘material space’ and evaluating intersections with Voronoi cells that
represent the regions where one material dominates. These intersections are used to calculate
interface points on the dual mesh. With a complete set of interface points on the dual mesh,
the interface line, created through connection of the interface points, is transformed into a
linear approximation to the interface within the original interface cell. The position of the
interface line is adjusted to ensure the correct volume fraction is captured.
In 2D the remap procedure remains an integration problem, with each material being rezoned

separately through integration over polygonal mesh overlap regions. At present a conservative
correction algorithm has not been implemented with the 2D scheme, and the method is �rst-
order accurate.

7. NUMERICAL RESULTS

In 1D, the selected test problem is a two material shock tube problem [10]. The initial condi-
tions of the test consist of two constant states separated by a discontinuity. The two states are
given by (�L; uL; pL)T = (10; 50; 1:1× 105)T and (�R ; uR ; pR)T = (1; 50; 1× 105)T with �L =1:4
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Figure 2. 1D density.
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Figure 3. 1D pressure.
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Figure 4. 2D density.

and �R =1:1. The discontinuity was initially situated at x=0:505. The numerical (dotted line)
and exact (solid line) solutions are computed in the spatial domain [0,1] and the output time is
t=0:001s. The numerical solution is computed with 400 cells and transmissive boundary con-
ditions are applied. Figures 2 and 3 shows good agreement between the numerical and analyt-
ical solutions of density and pressure. The 2D test problem is a cylindrical explosion problem
[1]. The governing equations are solved in the spatial domain [0; 2]× [0; 2]. Initial conditions
consist of a region inside a circle of radius 0.4 centred at (1,1), and the region outside of this
circle. Initially, the �ow variables take constant values in each of these regions, and are joined
by a circular discontinuity. The two states are given by (�in; uin; vin; pin)T = (1:0; 0:0; 0:0; 1:0)T
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Figure 5. 2D pressure.

and (�out ; uout ; vout ; pout)T = (0:125; 0:0; 0:0; 0:1)T with �L =1:6 and �R =1:2. The output time is
t=0:25 s. Results for density and pressure are shown, respectively, in Figures 4 and 5.
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